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TECHNICAL REPORT R-45

EFFECT OF BODY PERTURBATIONS ON HYPERSONIC FLOW OVER SLENDER

POWER LAW BODIES

By tIAROLD .'k[IRELS all(| PhiLIP R. THORXTON

SUMMARY

II!/per._onic-.¢leluler-body theory, in the lira it ax the

Jree-._'tream ]l[ach n_tm bet become,_ infnih,, i._ uxed to

3fi_Id l]_e effe<'l fff .,'l;gldly perlurbD_g the xu@tce off

Mender two-dimen.¢ional and axL_ymmetric power

law bodie._'. The body perturbatlon._ are a._._umed to

hare a power law e,ariatio_ (with. ,_'treamwixe dixta_ce

tlown,s.tream qf the no._e o.f the body).
The perturbat;ol_ equationx.formutated herein can

be used for a rariety q: problem,_. In particular, the
(fleet q[ boundary-htyer decelopmeld, very small

angles oJ attack, and nose blu_dD_g can be .found.

Numerical re._ult._" are pre,_ented.for (1) th.e _:ffect (_

boundary-layer de_,elopmen[ on the .flow peer lwo-
dimenMonal and axL_ymmetrie ,_lender power law

bodies, (2) the (j[ect of rery ._mall a_gle,s' qf attack

(on two-dimen,_ional power law bodie,_'), and (3) the
_Jfect <_ blunting ttte nose qf very xlender wed.qex and
coiTe,_.

Differential equatiol_x ,for,ill,tin 9 tke (fleet of a

power law lateral perturbat:ol_ off the cenlerline oJ" a

,slender power law body are[otto ulated. _\5> n u.meri-

cal rexultx are gicen. Probably, the mos'l imporht_t
application <!f the,_e equation, s ix lo determine [l_e

flow about axially ._ymmetric power law bodie,¢ at

very ,¢mall al_gle.s" of attack.

INTRODUCTION

Inviseid hypersonic flow over sh, nder power law
bodies was stu<lied ill references 1 to 3. These

references assume _2<<1, 1,/(3/5)_<<1 where 3f
is the free-stream Maeh number and _ is a cha,'-

aeteristic sh'eandine slope. In the limi| 1/(3[3)_=

0, the sho<'k shape and body shape are similar and

the equations of motion can be redu('ed loa se! of

ordinary differential equnlions. Numerical solu-

tions of these "zero-order" equa!ions are lallula{e(1

in references 1 and 2. Approximate analytical
solutions are derived in reference 1. "Pile first-

order (,ffc('t of small 1)ul nonvanislling values of

1/'(3/6): is also found in references 1 and 2 1)y ex-

panding {lie equations of me[ion in terms of
_/(3/'a) _.

In tile present paper attention is restriel,ed to

lhe limiling case l/(Ma)==0. Two-dimensional

and axisymmetrie body shapes of lhe form ]
r_--,.r'_-kex N+_ are considered where ra is lhe body

ordinate, x is distance from the nose (ill l]le free-

st.ream direction), m, .\', and _ are eonstanls, and

is small. For e=0, the body is of the simple

power law lype considered in references 1 to 3.

The flow corresponding to e=0 is termed tile
"zero-order" flow herein and ma3" be found from

the zero-order solutions presented in references 1

and :2. For e small, bu! not zero, lhe additional

I erm +zv+r_ represen!s a small power law pert url)a=

lion of the zero-order body shape. The solulion

for tile resulting flow fieht pert urlmlions is te,'med
the "pertu,'bation solution" and is Ill(, subject of

ihe present report. The equal.ions developed

herein can l)e used to find lhe effect of t)oundnry-

layer development, very small angles of attack,

and nose I)lunling on slender power law bodies at

hypersonic speeds. Numerical resuhs are pre-
sented for a variety of eases.

l-t, should l)e recalled (e.g., ref. 1) that t.he

assumptions incorporated in hypersonic slender

body theory are violated in lhe immediate vicinity
of the nose (x--0) of slender power law bodies

(excel)[, for wedges and cones). Hence, tile solu-
lions found herein are not expected 1o be wflid at

the nose. Itowever, Ill<'3" are expeeled to 1)e valid

do_,_,q]stream of this region.

1 A more speei.fiC representation of {]It' body S]l;IDeS consl<h'red herein Is

given by (q_. (.13)and (G3a).

1
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ANALYSIS

The equations of mot.ion for hypersonic flow
over slender bodies are utilized to obtain tile

zero-order and perturl)qtion equations for hyper-
sonic flow over slightly perturbed power law

bodies. Expressions for shock shape, pressure dis-

tribution, and drag are then noted. Finally, an

analytic solution of the perturbal.ion equations is

given for one class of perturbations. A numerical
solulion of the perturbation equations is required,

in general. Symbols are listed in appendix A.
,_|any of the details of tlie analysis are reh,gated

to appendixes B to II.

tIYPERSONIC SLENDER BODYTHEORY

The equations of motion for hypersonic flow
over slender bodies (e.g., ref. 4) are summarized

in this section. The equations are applicable pro-

vided that 52<<I and t/(:l/a)_<0(1). Tile sum-

mary is the same ,,is that, given in reference 1 and

is repeated here for convenience.
Dimensional variabh's are barred herein (77, 7,

7, 7, etc.). See figure 1 for some (if t.hese quantities.

f) I/

ing nondimensional qminiitios art' introdu('('d
(following ref. 4):

x=7/E u= (_-_=)_=a 2 P "P"v3l_a2;TL_'_ (1)
r=7/E_ v T/-g._ p---p/-p= d "

The body shape and shock shape are denoied by l

"_+=7_(-;) and 17 17(7), respectively, so th,tt

r_=TJT.a R /"?lEa (2)

If these quant.ities are introdu('ed into tit(' equa-
l.ions of motion, and terms of order ($2are neglected

(compared with 1), the hypersonic sh,nder body

equations tit'(, obtained. These are (r(,f. 4):

Conti rail3":

r-_[omenl tim

v--7:*7(_)

_o_k ,/</" _ |
// _o(Z)

,/% (,7)
/" I

M I- z- q ,,v
Fx(',t-nm 1. -Physic-d quantities for study of hypersonic

flow over slightly perturbed power law bodies. Subscript

zero refers to unperturbed power law body. Note,

_=Ru(L)JL.

Let _ represent a characteristic body or streamline

dope at(it r represent a ('hara<'teristie streamwise

length. Two-dimensional and axisymmetri(' flows
are considered, with (7,F) and (,_,'g) being the
streamwise and transverse coordinates and veloc-

ities, respe('lively, lit order to obtain the hyper-

sonic sh,nd(,r body equations of motion, th(' follow-

Ent,rgy"

bp , bp_', pr=0 (3a)
5a'T_7, '_ r

{'b_'+r b,". bp
*' \b._ 5;:)+b-7 =° (3b)

O(p'iP_) + v b (pip') = 0 (3e)
b.; br " "

The t)oundary conditions are:

At body surface:

(lr_ (4a)
_b _(_,

Upstream of shot'k:

u= = c+ = 0 (41))

p_ -- 1/(y;l["-50 (4c)

p+- 1 (4(1)

Downslrt'am side of struck:

,'"[,_,(,',".,,;;] (+>+"=_ _ /\ d.,- .

" "r+] t d,) L \ 2y /1' t.d,,:

Cr+ 1" ,,"
L_ 11 ,y__l)/' [1 +{ 2 \"l/dR.,1[&)2|+ty--- l),," k d_ (4g)P

tt-ere a:-0 for two-dimensional flows and a = l for

a-,:isymmetric flows. This syst, em of equations
can be solved independently of tit(' x-mom(,ntum

equadon, and therefore (It(, latter is negle('ted.
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Ill the present reporl it is further assumed that:

1,'(=1[5)2-->0 so that equations (4c) _nd (4e) to (4g)
l)eeonle

p= ----0 (Sa)

The present l)robl(qn may be viewed as lha! of

fin(ling the flow field associaled with shock shapes
of the form

1;:: :r"(1-}-_._°'-) (9)

2 dR
Vs=.,/___ 1 dx (5b)

2 ( r,y
m=_\dx/

\y-_/

FLO_ _ ABOUT _LIGHTLY PERTI_RBED POWER LAW BODIES

The hypersonic slender body equations of the

previous section are now used to find lhe hyper-

sonic flow over slightly perturbed slender power

law bodies. The limiting case 1,/' (._ [6) 2- ->0 is as-

sumed. Note that either the assumption lhat

_2<<l or lhat l,(.lIS) 2 >0 is violated at the nose
(x=0) of a slender power law body (exeepI for

wedges or cones) so lhat the solutions found herein

are not expected 1o be x'alid in the immediate

vicinity of the nose. IIowever, they are expected

to be wtlid downs{reanl of this region.

Tit(' zero-order t)od>" shape qnd slm('],: shape can
be expressed as (from ref. 1)

r_,o (-2) = _.oC_'' (6a)

Ro(2) _ (fib)

where rl0,o, (7,, and m are constants. For the

remainder of the report the ('haraeieristie length

is taken to be the slreamwise h'ngth of the body,
whih, the characteristic slope is taken to be t.he

zero-order shoel¢ ordinal e at,_= _ divided by L'-, or

_ P,0(Z)_7o,0(E) (7)
L L_b.0

Equations (6) can thell be written, in non<timen-

sional form,

re,o= ,l_.oX_ (8a)

llo---- x" (8b)

The zero-order flow field is the same as that, of

references 1 and 2 and is considered known. The

constant rib,0, which is the ratio of the zero-order

body ordinate to the zero-order shock ordinate, is
denoted t)y the symbol r/_ in reference 1 and is

t.almlated t.herein for various vMues of v, ¢, and m.

where _, a.,, and A' are consta.nls and e is small.

To effect a solution, new independent varial)h,s

are introdu('ed according to lhe relations

so lhal

r r

Ro

(10)

p-- m_ 2c''-') (Fo÷ __VF2) (12(.)

p- _o+ _¢+,, (12d)

where ¢, F, and ¢ are functions of ,1 and the sul)-

script 0 indicates the zero-order solution. The

subseril)t 2 is used for the perturbation solution
to avoid confusion with the firsl-order solution of

reference 1.

The body s]mpe, consistent with equalions (12),
is

rb=.r"(_<o+e,r "v) 5<1 (13a)

rb-- a'ra (_x:v) l/(#+I) 3:1 (13b)
where

Equ.tlions (13) follow from equal ion (4a) and

the asyml)toli(' form of equation (121)) near

7/<0. (See appendix B for further discussion.)

-%

i).,' b_ _ by ) (_)
6_1

These are the same indepeiident varial)h,s used
in reference 1. The zero-order shocl; loealion

corresponds to r/--1 whih, the zero-order body

]ocalion corresponds lo r_--v_.o. In the new no-

fallen, equation (O) becomes

R= _"(1 -{-ta=,_'-) (12a)

The boundary conditions (eqs. (5t 0 lo (5d))

suggest lhe f<>llowing forms for lhe del)en<h,nt
variables :
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For problems wherein lhe body is prcsenied,
equations (13) are used to determine e and N.
For these problems the constant a.., in equation
(12a) is initially unknown and is found as a
consequence of lhe solulion.

Substituting equations (12) into equations (3)
and collecting terms of order e0 nnd e_ yMd the
zero-order and perturlmtion equalions, respec-
tively, whMl are summarized as follows :

Zero-order equations :

Conlinuity"

(_,,-,#¢;+¢o_0;+,, ¢_°=0 04,0

Yo-_;±\'_E-Yo)_E-t-'YL¢,, g-_,0 j¢,_

L ¢'° _2_E j/,;=o 07c)

where

The boundary conditions al -q=l are (eqs. (135)
and (116))

_2(1) 2
a2 -,/-}-1 [1+ (°-@1)g]--¢'°(1) (lga)

r/-5lomentum :

, ,-Yt /_+r)

Energy:

(14b)

/<_(,) 4
a2 -y+l [1-}-(°-}- 1)P']-- F°("1) (18b)

¢2(1)_----_(1) (18c)
aa

(-_-_ _;\(¢_-,7) --y _0)-(_+ 1)_ 0 (t4c)

where primes indicate differentiation wilh respect
to rl. The boundary conditions at r/=l are

_(1)=Fo(1)=2/(T+I)

¢0(1)-=@-t-1)/(V/1) }
(15)

Equations (14) and (15) completely define the
zero-order flow fiehl. The body location is found
fi'om the tangency condition (eq. (4a)) which,
for tile zero-order solution, becomes

_(,70,0)=,70,° 06)

Equation (16) is, in fact, the basis rot' determining
_/_.o. The zero-order solution is discussed in
references 1 and '2.

where, from reference 1,

1

(y+ lJ

2
F_(1)=(7_l ) (y+l)a [(2"r--l) (v-l-l) (o'+1) ¢/

-2o-v G'-])1

1
_;(1) =-_, [3 @-}- 1) Or+ 1) B-2o- (_r- 1)1

12/-- l)-

WheIL a body shape is specified, the eonsla,,t a2 is
initially unknown. Its wdue must be such thal,
the tangent flow bmmdary condition at tlw body
surface, namely (eqs. (Bll) and (BI6)),

¢2(_,o) (_,-[-1) (3'@"/#--fl)/T fl<_l (19,0

Perturbation equations :

? ' 1
, , .¢, . -_o+_o+(_+l)u

_ _2_(:+_) . +p .... I
-_, ¢'(, ,,_,0 n/,7-¢o L _ ¢" J

i !e_ 1 Fo F_ [+¢)1
r F,; q

lim (n_:)=(.r÷-ru--1)/.r fl=l (19b)
_t>0

is satisfied.

Since the unknown constant a2 appears in the
bmmdary conditions at n--1 (eqs. (18)), it is not
possible numerically to inlegrate equations (17),
starling at ,1=1. Ilowever, if equations (17) are
each divided by a2, the quantities ¢.Ja2, F_/a2,
and ¢:,/a2 can be considered as the depemh',_t
variabh,s, and a numerical integration of equalions

(17), starting from r/=l, is lhen possible (using
the boundary conditions lisled in eqs. (18)). The
numerical integration cannot proceed all the way

1
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lo rJ<0 since the differential equalions are singular

at that point. Instead, the numerical integration

is terminated at some poinl near "Ob.o for which

the asymptotic solutions derived in appendix
D are valid. If file values of _a/az, F2/a.,., 1//2/'(_2,

rl--¢o, ¢o, re, and 0o (defined in ref. 1 and appeudix

D) are known at this point (from the numerical

integration), equations (D7), (D12), or (D17) (de-

pending on whether 0_5<_1, fl--0, or fl--l,

respecliw,ly) can be solved 2 for the constmds a2,
1;, and D. (The constanl aa is introduced into

equations (D7), (D12), or (D17) by rephteing
q':, ts, and Fa by a_(_o_/a_), aa(¢_/a_), and aa(F_/a_),

respectively.) When B and D are known, equa-

tions (DT), (D12), and (D17) completely define

the flow in the vicinity of _<0. When az is
known, lhe dependent wlriablcs of the numerical

integrations can be converted back to _a, ¢,%
and/<a and the solulion is comph, te.

EXPRESSIONS FOR SHOCK SHAPE, PRESSURE DISTRIBUTION,

AND DRAG

Expressions for shock sllape, pressure d istribu-

lion, and drag are summarized in t lie present

section in terms of dimensional quanlilics. The

cases 5<_1 and /3-:1 are lrcatt,d separately.

0ase fl<l.--T]ie zero-order body is of the form

7_,0 (7) = _<oC7 m (2Oa)

which defines C for a specified body. For a power

law pert u rbalion

7,,0(:)-:

which defines e for a specified body perlurbation.

The corresponding shock shape is

,r (7) _,7_.o + _("7<0(7) ""

where the zero-order shock shape is _0(E)=

CY'= 7_,o(Y) /_ o.°.

The local pressure coefl]cienl, at any point, is

(r om cqs. (1), (5a), and (12c))

n-- 7) 1.'7 \2_,,,-1_ r- /7\x-I
c_' -'- _=2£m'-'l_1 IFo+d<,f:kl / (22a)

q _,L/ L -\El J

1 (170,o" _ , , 7 '_

=2 (d Ro'_ l"oq-dC (22c)
\dT/

In appendix C it is shown that

1';(_0 =Fo(_.o)

I4,(rlb) = Fa (rl<0) (23)

so that the pressure at _b.0 is the same as lhal at

,Tbfor a given Y. Using equations (22b) and (23)
gives the pressure eoetlieient on lhe perturbed
body :

c,,,b 2Fo(rl,,,o) 1-} _ _) L x (24)(dT<0/dT) _- 7/_.0

Alternative forms can also be deduced.

The forebody drag up to station .'7 can be found

by integrating lhe pressure distribution along the

body surfa('c. This is clone in appendix E and
the resuh is (from cq. (E4))

2rr,m,_q£[F,,.o(E)],+' m/a+3)-2L\Z

+ dm(_+3)-21 FF_(vo, o)
m (aq-3)--24-N hFo(, _o')

_4 }_,,,o , (25)

-_If tile leading terin ill /2 is the otlly term retained in the expression for

Ya aml ir the leading terms in .t and /2 are the only terms retained in the

expression for sa2, lher(' results

(o-+1/("¢ -l- 3'la -- 8)/"/

.... (f:) .<,
a= -- (3,-,8) F_

(-,f+'y.u -- 1)/_,

= ,r¢,_#(,-¢o) _-=-t ,8_1
' LT,7*_E J

B_ (.y--/_) Fo aa /_<I

for _ near nb 0.

Equation (25) is valid provided that

m >2/(0-+3) (26a)

N>2-- m (0--F 3) (26b)

Equation (26a) corresponds to fl<l, which is the

case under consideration in the present seclion.
For o=0, (,quaiion (25) assumes thai the body is

ssmmwlric al)otll l[|e E-axis. The overall fore-

527924 60 --_ o
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body drag coeffwienl, referenced to the cross-
sectional area of Ill(, base of tile zero-order body, is

D(E)
CD-----2,__7:q[70.o(Z)]_+ a

2_qma6ZFo(w 0) : 14 e[m (a+3)--2]

_iiiii" ,o,o Jj

When the perturbations are due to boum|ary-

]ayer development on lhe zero-order l)ody, the

pressure drag on the zero-order body can be
found from equations (25) and (27) by omilting

the term (z+l)(1-l-g)/v<0.

The drag can also be found from consideration

of the energy of the transverse flow fi(,ld (refs.

1 and 2). This is (tone in appendix E. The

resulting expressions for drag (eqs. (E 11) to (E17))
arc more general than equations (25) and (27)

since the former can be made to apply for all
values of m and N.

Case fl--1.--For f_=-l, the zero-order flow cor-

responds to flow over a fiat t)late (a-0) or cir-

cular cylinder (c_--1) of semithi(.kness, or radius,

equal 1o 7,v. If the nose drag at _--0 is knm_m,
and is denoted by D_-, the zero-order shock shape

is given by (ref. 1)

_.,- -" L 7 , j \_/ (28)

where CDN=--Dx/2'-#Tr'q(FN) _+1 is the nose drag
coefficient and I is tabulated in reference 1 as a

?-

_ _-

L-

(b)

Equlvalmll physical flow.

function of (T and _'. The body shape can be

expressed as (from eq. (13b))

r,,=:-.=-?,. ' ',77 _,_/.j (29)

which defines e and N for a specified zero-order

flow and body perlurbation. The body ordinate
7b(_) is measured from the surface of the zero-

order body (sket('hes (a) and (b)). Skeh'h (a)
is the hypcrsonic-slender-body-theow idealiza-

tion of the flow pictured in sketch (b). Ityper-

sonic sh,nder body theory gives a poor represen-

tation of the flow near 7=0, as previously noted.

From equation (29) it is seen that _(-2/l'_'v=

[7b(Y)/Ro(7)]_+L The perlurl)('d shock location

can then be expressed as

#(_____L.=1+o., (30)y+,

2-

(a)

Perturbed constant-energy flow. (Flow due to drag im-

pulse at _ 0 plus perturbations associated with "7t,_)).

From equation (22c), the pressure coefficient on

the body is

F + Y+'Icp., , =2Fo(O) 1 (31)

Th(' forebody (|rag up to slation _ is, for N_0

(from eqs. (E7) and](28))

D(y)::=:DNF_, /_+u)F0(0)(7_2_7)'_'+'- _ (a2)
L -_ ,,(_+i): \&(_)/ j

The perturbation solution is valid provided

[7_(y)Ig0(_)lo+'<<t.
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SOLI;TION FOR N 0

When N=0, the solution of lhe perturl}ation
equnlions can be r,,und analylieally in terms of

the zero-oMer flow. The procedure is as follows.

For a shock shape Wen by

::= :(1 + _a_) (33.)

the perturbath)n equnlions and the boundary

conditions at the shock are satisfied by

_2 r

--=_',,-- no', (33b)
(/2

F2=2Fu-- _['; (33,')
(/'2

¢_-- re:, (33(I)

Note that F/n,,.o)=2(/eFo(n<o) since Fo(n<o)=0.

For _l the boundary condition on the body is
satisfied if (eq. (B9))

_,.,(rl0.o) = 1-- _(nb. 0) (34)

Evaluating equation (33b) ,,t n<0, noting _(n<0)

=n0.o, an<l substiluling into equation (34) then
give

(/_ 1/_0.0 5.<t (35)

For /3=1, the shock pevlurl)ation AI7 may be

eonsidere<t as due to a body pe,'turbalion A_v.

From equation (28)

_ o-+ 1 .X'Fx

pT= +T-_.,, (36)

But, from equnlion (333), AR/R=AR-/IT=_a.,.

Substitution into eqmltion (36) then gives

<_+1 AF,v
eaa: 0"+3 "F_. /3 l (37)

The present solution resulls fvom lhe fact that

for N--0 tim perturbed shock anti body follow
the same power law ns does the zero-order flow.

The resulting flow can in fact be treated as a zero-

order problem. IIowever, the solution is useful

for nmking a partial ('|w('k on calculating machine
programs (when the ]a{ler are used to o])tnin

numerical solutions of the pert urbation eq uations)

and for providing addilional data when tabulat-

ing (/2 and Fa(n<0) as run(,tions of v, % _, and 5.

7

NUMERICAL RESULTS AND DISCUSSION

The equations of motion have been integrated
numeri(,ally to determine the effect of (1) boun(lary-

layer development, (2) very small angles of al tack

(for a=0), and (3) blunting the nose of very
slender" wedges and cones. The results are dis-
cussed herein.

EFFECT OF BOUNDARY-LAYER DEVELOPMENT

The boundary-layer displacement thickness _-*

on a slender power law body at hypersonic speeds

is <lerived in appendix F. The result shows (re-
('ailing that the superserip[ bars lmve been omit ted

in eq. (FI3))

_* "r--' / __ .11+ j..,(,+J_)) _ a_

(as)

wh<,,-e /',,7='_:=D'_, _= T=L/E;o=eo,_st,_,,*,
nm| _ is free-stream viscosity. The qua nlifies

Ja and (J,+ Ja)/J_ can be fou,,d from table I rot"
specified

a_u-1 20-m) __u-1 2(,,+1)t_
Y 2'n,t(o'-{ 1)--1 "Y (<_-t 1)(4 -fl)--2

(393)
(t_,,),,,

g"-- (a,,) +

stagnation enlhalpy of fluid at wall

-stagnation enthall)y of fluid in fl'ee stream

(39b)

For 0_<__<1 and a=0,1, the quanlily _ varies

between lhe limits 0<__<2(_--1)/'/. Table I is

ba.¢ed on the numeri(.al results of references 6 to

8. The assumptions involved in the derivation of

equations (38) and (39a) are noled in appendix F.
Equation (38) is not valid for a--l, fl= 1 as dis-

cussed in appendix F.

The effective body shape is _=Fb.0+g*. For

_'* small compared with 7b.(,, the effective body

shape can be expressed as

,-=:( -%,,,_ (40)
•, \nb,0+ _.r= /

where e is found fi'om equnthm (38). Thus, for

this ease,
3 1

tt=_ 2(a+l) (41)
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The perturbation equations have been integrated

numerically for _=0,1; 7=1.]5, 1.4, 1.67; 5--0,

_,_, }6, 9{, 1; and values of _ defined by equation

(41). The ease _=1, fl--1 is excluded. Tim

results are given in tabh, II.
For m=}4 / (i.e., m=0), the perturbed shock

shape and body shape are similqr, both following
the _{ power law variation of the unperturbed flow.
This fat't was used in references 9 anti 10 to stu(ly

boun<lary-layer deveh)pment at hypersonic speeds.

For this case, the pen urbat ion solut ion is given by

equations (33).

EFFECT OF VERY SMALL ANGLES OF ATTACK (FOR a 0)

The effect of very small angles of attack on two-
dimensional power law bodies at hypersonic speeds
can also be found. This is clone herein.

If a two-dimensional power law body is at angle

of attack a, tile equation of the upper surf'we

becomes 7b = w.0CY"-- a_, or

ro=x'_(,<o_ Ext-'_) (42)
where

_--__,_/_

Assuming e<<l, the resu]ting flow (in the upper

h'df plane) can be found from tile perturbation

equations with
.-_12 (43)
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The moment about the h, ading edge .l[ is

Numerieal solutions ]rove been obtqined and these

art, tabulated in table lI. For _-¢_ 0, equations

(33) apply.
The lift per unit span can be found by noting

that the perturbation solution is antisymmetrie
about the .'7-axis. The h)eal lift coefl3t.ient is then

.xc o._=- (c,.&o,,,m- (c ,.,),o_

-- __ 4emWF_(nb ,,)x,.-_

The net lift per unit span _'. is (for m/0)

^ -- 1

L=qL f Ac_.b(tx

=--4emf2L,iF2(n<o) (44)

The lift coeffwient, referenced to L,

n

Lq

is (reealling

(45)

Integral ion yields

^

3[ " m2 _F
Zeq =4l-_n o 2 (n<o) a (46)

The center of pressure _.p --=._'//)_. is then given l)y

"_.p.= m (47)
Z 7n+1

The lift 1)robh'ln, for o---l, is formulaled in

appendix G. It has also been treate(1 in refol'enec

11 using Newtonian theory.

EFFECT OF BLUNTING TIlE NOSE OF VERY SLENDER WEDGES

AND CONES

The effect of bhmting the nose of very slender

wedges and cones is now considered. It is as-
sumed that the wedge or cone is sufficiently slender

so that the major contribution to drag is due to
the bhmt nose. The zero-order flow is then a

constant energy (5--1) flow. The divergence of

the body downstream ()f the nose induces a small

perturbation in this zero-order flow.

Sketch (a) indicates the flow fiehl considered,

and sketch (b) indicates the corresponding physi-

cal flow. In the present example, the body shape

is given by

7_=a_Y (48)

where 7_ is measured from the surface of the zero-

order body (sketch (t))) and 5b is the semivertex

angh, of the wedge or cone. From equations (13b)

and (48) it follows that

+ 1 (49)
/_- 2

for the present prol)lem. The equations of n'mtion

have been integrated numerically h)r _= ((r+ 1)/2;

fl--1; a 0,1; and ._=1.15, 1.4, 1.67. Thc

results are given in tal)le II. The shock shape,

pressure distrilmtion, and drag can be found from
equations (30) to (32). The solution is wdid

provided that (r_/R0)'+l<<l.
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Define lhe following quantilit, s:

l

\ n x� r.v

I

= /'-)a_ V +_ ao7
a-_ . _

t ( 'Dv ,) =FN

I

(5On)

where K is a function of v,0-.
(31) can then be written

_=2/:o!o, F 2E - :+q"• L_+3'7) o+:,j
1 ' F_(o)F 1 °+'-I _' }

(5010

(50c)

Equations (30) and

} (5 la)

(51t>)

The quantities R and cp.b,/a_ are fun('lions only of

for a given a,_.

The problem of a l)lunled wedge m, cone has also
been trealed by Chernyi in rere,'enees 12 and 13.

An account, of his method is given in appendix I1.
The melhod is approxima[% but becomes more

exart as "r approaches 1. It ]ins the advantage

of nol being reslri('l(,d to sm'dl values of _ as is 1ho

perlurlmlion analysis of lhe present reporl.

Chernyi presenls curves (if shock shape and surface

pressure distribulion against _ for T-- 1.4 and

0-=0,1. C|wrnyi's equations are solved a nalyli-

tally for small _ in appendix II, and the resuhing
expressions for E, a_,, F0(0), and/<.,(0) are compared
in lable Ill wilh the numerical resulls of the

present repori. The agreement beeoines poorer as

v (leparls from 1, parli('ularly for Fu(0) and a2.

LF;wIs I_ESEAR('II CI']N'TER

N3,TION-Af, AERON'AUTIC_ AND _PACE A.I)MINI,_TRATIO._

CLEVELAND, OH|O, ,lr(ly 22, 1959
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APPENDIX A

SY3rIBOLS

constant defining shock perturbation

(eq. (9)) ./
constant (eqs. (6)) 5

drag coefficient (eq. (27)) _*
drag coefficient for impulsive drag a<l-

dillon at 7- 0 (eq. (28))

local pressure coeflleienl

impulsive drag addition at _= 0

forebody drag up to station
pressure sinfilarity variables (eq. n

(12e))
a conshml (eqs. (D6b), (Dllb), nb,o

(D16b)), or ratio of stagnation

enthalpies (eq. (Fab))
wall- 1o free-stream stagnation en- 0

llmlpy ratio (eq. (39t0)

st ag'na tion on thalpy Oo(n)
function of a,'r tal)uhdcd in ref. 1

quantities defining boundary-layer u
thickness (eq. (F9))

sl,'eamwise length of body "_

free-st ream _[aeh mmlber

zero-order power law exponent (eq.

(6))
perturt)ation power law exponent de-

fined by equation (9)
Pnlmltl number

pressure
dynamic pressure, "_-_/2
lateral eoordimlle of shock

lateral coordinate (neared to _-axis)

lateral eoor(linate of body

semithickness or radius (at 7= 0) of
blunt-nosed two-dimensional or axi-

s3mmwtrie body

lemperature

velocity in _-direction

velocity in F- or 7-direct, ions
velocity in 0-directioa of cylindrical

eoor(tim_tc system
Cm'tesian coordinates with 7 in stream

direction and origin at nose of body

angle of attack
alternative zero-order shock shape pa-

r me,e,,(±--l)/(.+
\ m 11 "

¢0(n),¢/n)

Subscripts:
b

eq. (F6)

rat,io of speeifi(' heats

characteristic slope, I:o(L)/L

boundary-layer <tisplneement thick-
lleSS

small quantity, defined by eqs. (20t>)
and (29) for specified body per-
[urlm t iota

lateral eoordimde similarity variat)le,

r/'fio (eq. (10))

ro.,,'l_o, tabulated in ref. l as function
of % o3 and /3 (denoted by rt,

lbet'ein)

<'vlindrie'd coordinate (sketch (e), ap-

pendix G)

zero-order stream function similarity

vnriM)le (eq. (DI))

M1erna live pert u vl)a tion power law ex-

ponent (eq. (17))
free-st ream viscosity

x (eq, (10))

density

0,1 for zero-order flows that are two-

dimensional or axis3mlmclrie, re-

speetivel 3-

similarity v'u'ial)les for c (eq. (12t)))
similarity variables ford (eq. (12(1))

similarity varial)les for w (eq. (G5))

quantity ewduated at t)ertm'bed body
surface

b,0 quantity evaluated at zero-order body
surface

s quantity evaluated at (or just down-
stream of) perturt)ed dmck

0 zero-order solution

2 pert u vlm tion qu an t iby
undisturt)ed fI'ee-slream value

Superseril)ts :
(-) barred <tumitities are dimensional

() unl)av,'ed quantities are nomlimen=

sional (eqs. 11))

()' primes indieate differentiation with

respect 1o n



APPENDIX B

BOUNDARY CONDITIONS AT _=1 AND _:_b,o FOR PERTURBED FLOW

It is convenient to satisfy the perturbed flow

boundary conditions at the zero-order shock loca-

tion (r/=l) and at the zero-order body location

(_=n_,,,). Tilt, appropriate boundary conditions
are found herein.

Boundary conditions at _ 1:

_Perturbed shock(_ =_m(I + (a2_N)
\\ =I+ ,_oZ,_N

kkk\\\ / /" /

feo: 

\--Zero-ordeF shock_..r/ = I

(C)

The zero-order shoe]_ ]oealion is at r/:l, while

the perturbed shock is at _= l ._ea:_ 'v, as indicaled

in sketch (c). The flow on the dowT_stream side

of the perturbed shock (denoted t) 5" subscript s) is

given by (from eqs. 15t)) to (5<1) and (12a))

3'+1
P_=3"-- 1 (B 1c)

Let Q-Q(_) be the variation, wilh rl, of any

flow quanlily, at a fixed station _. Expanding in

a Tayh)r series about n=l then gives

Q(,)=Q(1) ! Q'(1)(,-l)+ . . . (B2)

]f r/ is taken to be the perturbe(| shock location,

l:l _a:_ 'v, equalion (B2) becomes

Q,=Q(I)+_a..,_ x Q'(I)+ . . . (B3)

Consider Q to be the transverse velocity c. Equa-

tions (12b) and (B3) then yield

Vs=/',_'_-1{[(_o(])@_'_(1)]@_a2_o(1)-} - • • .}

(B4)

Equating equations (Bla) m,d (B4) and collect-

ing terms of order _ yMd

_P_(1)-- 2 (1 "ac_)-_':(1)a23"-[-1 , ([gs)

Similarly, i(leniifying Q with p and o yiehls,

respectively,

(;)F2(I) _=___4 1+ --Fo(1 ) (136a)
a_ _,+1

@_(1)_ @'o(1) (B6b)
(/2

Equations (B5) and (B6) give the boundary con-

ditions on _._, F_, and ¢,_ at. n=l an(t appear in the

body of the report as equations (78).

BOUNDARY CONDITIONS AT "_=_1_,,0

The bounda_3: condition tlmt the flow velocity

be tangent to the body surface, rb=drb/dsL is now

considered. The eases _<1 an<l _=1 are trealed

sepnra rely.
Case _<1. The zero-order body is located at

_----r/b.o, while the perturbed body is located at

_b--v_.o+_ 'v as indicated in sketch (d).

_b: ('(_ o+, ._)
,- Per iu rbed body

"-., L_: _,o+, _ +v

_ I ,o:'bo C
'-=ero-o, er o+t ' '

(d)
11
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Expanding equalion (12b) in a Taylor series
aboul _,D, at constant _ yiehls

+,,o(_0,o)<-"+ • •. ]+,_-'>S_,o)+ • • • } (B7)

But for r0--_(nt,.o _ ,_x)

(_--r_=m _"-' E_. 0+, (1 + N)_-'7 ] (B8)

Equaling equations (B7) and (BS) and collecting
terms of e then give

N ,
¢_(n_.0) 1 +m--¢0(nb, o) (Bg)

For _<_1 (from ref. 1)

_;(,7_.0)= l_3`-___A_(_+ 1) (m 0)
3'

Substilulion of equation (B10) h_to equation (Bg)

yiehts

so_(nb,0)-- (cr+ 1) (3`+ 3`_,--5)/y _,Bll)

which appears as equation (19a) in the body of Hm

report.
Case B-1. -For /5=1, the zero-order body

shape is rb.n=0, and the perturbed body shape is
taken to be of the form

(BI 2)
,lo= (_eN),_,+,) I

Expanding _oo in a Taylor series aboul, _,u--0

TECHNICAL REPORT R--45--NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

and noting _x---(_v)_/<_H)r/g permit _'b
writ ten

{ 0 be

m_"-*{[_,,,(0)+_,;(0)(_.'-) ':'o+'_ + ... ]

But,

(B_3)

(t/'b/,i,_ pr_l I F// ] _'_ 77"
(BI4)

Equaling equalions (Bla) and (B14), holing

_0(0)=0, _[_(0)=l,,"r (from ref. 1), and collecting
terms of order (_(,v)_/(,+_) then yield lo lifts order

r_gsoa(r/_)= (y-17y_-- 1)/3` (]315)

From equation (D18) it is seen that equation (B15)
can also be written

lira (_o_)-- (3"+3"_--1)/y (BI6)

which appears as equation (19t)) in the body of lhe
reporl.

It was necessary to take ro of the form indicah,d
by equations (B12) in order thai equations (B13)
and (B14) be eonsislen{. Conversely, the required
form for ro could be deduced f,'om equalions (B 13)
and (B14). That is, let ro=(_(e(x) _ where k is an
unknown eonshml. Using Ibis expression in
equal ions (B13) and (B 14) and noting Hm n_,,,(n) =

r_ )(1

constant (from eq. (D18)) lhen show thai these
equalions are consistent only when k-- 1/(aq- 1)



APPENDIX C

PRESSURE DISTRIBUTION IN VICINITY OF BODY SURFACE

Tile pressure distribution in the vicinity of the

body surface is now considered.

Tile local pressure is given as n function of Fo

and 1:2 by equation (12e). Expanding in a

Taylor series about n_,0 shows

+...]+_K[F_(_,,o)+...] (C1)

Noting Fo(n_,o)=O, from reference 1
ing terms of order e° and d yiehl

Fo (,7_)=Yo (n_,o) "l_

JF_ (,7,,)=F_ (,o.o)

, and collect-

(C2)

Thus, the pressure at nb is the same as that at
nb,o (for each value of ().

13
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APPENDIX D

SPECIAL INTEGRALS AND ASYMPTOTIC SOLUTIONS

In the present section the perturbation equa-
tions of motion are written in a form wherein the

dependent variM)les are ¢2/(_--_o), F2/Fo, and

¢:/_b0. Some special integrals are then obtained.

Finally, asymptotic s<)lutions, valid near _=_.0,
are found.

Folh)wing the l)rocedure used to derive equations

(55) in reference 1 allows equations (17) to be

writ ten, respectively,

(D 1a)

(Oo)_-/ +., V ,:Fo/F:\'[ .- } +_(_)-(_+1)__0_ \..-_/ "o \-ol

[ °'()+(_+j)oo _ 1+2_ __'-'OoO;;] _.
oo u 2 "(0'0/3

r/ O'o_F00--¢0 1=" (Dlb)

' F.,. , o°( o
(Die)

where 00 is a stream function similarity variable

defined by (ref. 1)

Oo=--esp[(_r-t 1)f1 (1_ 7

(The zero-order quantities _po, 2"o, and _b0 are

expressed in terms of 00 in cqs. (40) of ref. 1.)

Integration of equations (Dla) and (Dlc) yiehls,
respectively,

_d_-- _'_+(1 +u) "" ['- _,2 d0o
¢/o n--co _"dn-_ O_+" FE_O_

(D2a)
|lnd

4-a.o_
fo =_ . _- d7 -_.o o_+"

(D2b)

where E_ and G are constants. The latter equa-

tions correspond to equations (56) in reference 1.
14

Elimination of the indefinite integral between

equations (D2a) and (D2b) yields the following
special integral (of the continuity and energy

equations):

G
fl_n ¢'o-t-(vg+v--¢_) _--¢2 (l+u). T0----(constanl) 0_

(D3)

where the constant can be evahmted in terms of the

boundary conditions at 7----1. If t_=fl (i.e.,

N= 2 (1 -- m)) and the subscript 2 is replaced by the
subscript 1, the above equations become identical

with the corresponding equations in reference 1.

Asymptotic solutions of equalions (D1) valid

near _.o (i.e., 00=0) will now be found using

the procedure of appendix D in reference ].
Assume _d(_--<¢o) of the fom_

¢" =o_[(_'-u)G+ (X'+P-u)M,.,o'_+ ... ]
rl--_o

(D4a)

where ._, P, L_, and -]G are constants. The cor-

responding values of ¢_ and F_ are then (from

eqs. (D2))

_o=0_'[(-_-? 1)L2q- (J_+P+ 1)M%0_+ ] E,O_+

(D4b)

0_ (v_'+ L.

+ [y(_Y+P+ 1)--¢]3I._0X+ . .. }-}-G_O_ (D40)

Appropriate values of eQ and P as well as the ratio

M%/La can be found by substituting equations (D4)

into the momentum equation (eq. (Dlb)) and con-

sidering 0o=0. This will be done for 0<fl<l,

_3--0, and fl=l, respectively. Since equations

(D1) arc equivalent to a third-order linear equa-

tion, three independent asymptotic solutions can
be found.

CASE 0<8<1

In the vicinity of 0o_ 0, equation (Dll)) becomes

d/FdFo) fl._.-o" {F_ ¢'_-0 (D5)
doe t- 2Fo_,_,o) \F00--_0/-
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Substitution of equations (D4) into equation (DS)
yields the following three independent solutions:

(1) For _=--(_), P=I, E2=G2=O, L2=

-- vL2. _, M2 = vM2. _:

:(,-o)'P_" --o _ [(3,+'ru-_) L2.,

+ (#--vu) M._.,0o-F... ]

_,'=o:(_) [-;3L_ ,+_,-_) M_ _0o
0 , i .,

+...]

/< (v-_k

_oo_=Oo t _ ](O+,yLlI._.,oo+...!)

L_._ 2VFo (,7_.o)

_--f

(DOa)

Equations (D6) can be linearly added t.o find the
behavior of _/(_--_Oo), _b2/¢_0,and F2/Fo near 00_0.

Replacing the constants L2a, L2.2, and E2 by A,

--B, and D, respectively, then yields

=. o0( + (e--.,)fOol_02

rl -- _Po

+ B[--u--(l--u)gOo]+OO_(hOo)+ . . . (D7a)

¢, -(_-¢_
_-AOo " v ,'[--5+(v+B)fOo]+ B(l--2gOo)

+DO_[I +(2+u)hOo]+ • • • (D7b)

F2 - ( >--_-'_
To=A0 o \ v i (33f0o) +B[@--#)-- (2v--_)g0o]

+DO_[n,(2+u)--_]hOo+... (D7c)

The constant A can be found by satisfying equa-

tion (Bll). Thisis done as follows. Recall from

reference 1 1]lat, near 0o_0,

(2) For ._r=O,P=1,G G=O, La=--G.2:

_"'_ =,uL2,2+ (l--u) ,'1.'/2._0o+ . . .
_;--_o

_k2.2__ L2,2+2_$_.z0o+
_0 " " "

F22
_=- (._-n) L,;,+ (_-;3) M_._Oo+. .

" 1--a

L,,2 2(2"/--5) Fo(r_.o)

--g

(3) For f(=/_, P=I, G2=0, L2=0:

_o_._ = oa(o + M:_,30o+...)

o_.=o_[G _+ (2+;,).1_ _0o+ .-.]

_=0_ { + [v (2 +u)-;_J:'l&._Oo+... }0

3L:.a - 1-_5r_<o

& --2(1 q-_)[_,(u + 2) -- fl]Fo(_, o)

---h

,¢

(D6b_

(D60)

00 _"

,,/

o.,,..o,3 ,, -,,>,o,j (Dsj

0o
,;-,,o= (o-+ _) _;

Evahmting equation (D7a) at. n_,o and applying

equation (B11) then yield

A "l+ 1 ¢+ 1 [-T-_ -1 --]I/vFo(n_ o) ago (139)

for the present case.

CASE O=0

The momentum equation becomes, near 00=0,

(0_ <t [_2I%--¢o)1 {_Fort_ d (FUFo)
-- (,r+ 1) \_} d0o dO

+_ [(o-+ 1)#-- (1 +2o-)1 ¢"

0o @_ F,

where

oo_ (_+ l),r U25
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The following three?independenl solutions result:

(1) For _=--1, P=2, G_=E2=0,
-- (l+u)La L2.,:

_'_,_ =o;_[L, , + (I__,).IL_.,og + . . . ]
rl-- _o

¢2,1 ,_001(0_}_2'_[2 100+ . . . )

/=od-_(o+23`?_L._oo'+ ... )

*l/a,l (3'-- 1) [0.-- Ca+ 1)#]

L2,1 _+A
Fv+l , 1 _.

43"(a+1)7/_'% L 2 l'o(rlt, o)j

__]"

(2) For _ 0, P=2, E2=G_=0:

(Dlla)

v,2._=--uL2,2+ (2--u):112.20o2+ . . .
"0--_o

¢'_,_= L_,_+ :3M_.._Oo'+...
.¢o

F2.== 7L=.2+ a3`3/_._0_+ . . .
¢o

-1£a_,,=. (3`-- 1)[(o-+ 1)#_-- (1 + 20.)u_}-o'(3`-- 1)]

L2,2 7+1

lo3"(,_+ 1),,2_ [%+ 1 Fo(no o)|T"I
.,O.Ok_ . ._l

-g

(3) For 2_'=,u, P=2, Ga=La=0:

(Dllb)

/_/-e, a

_'_,_=O_,(O+ 2M_._og+ ... )
71-- g_o

¢',_=o_ [E_+ (3+_)M_ _o_o+ • • • ]
4,0

_=o_ [o+3"(3+u)3_,_o_+ • • • ]

--0.(3' 1)
7+1

-h

(D1 lc)

Replacing the eon',::,ants L2._, L=,2,and E: by A, B,
and D, respectively, and linearly adding equations
(D 11) then yield

,p2 =A0o-_ [1+ (1 -u)fo_l q B [--_, + (2--u) gOg]
17--_oo

+DO_(ZhOo_)+ • • • (D12a)

_-=A0o-' (2f0g) q- B(1 q- 3gO_)

+DO_,[l +(3+u)hOg]÷ . . . (D12b)

' '(23"fog)+B(3"+33"gog)yo=,loo
+Do_[3"(a+u)hog]+... (D12c)

which defines the behavior of the depend(,nt
variables near 00=0. From equations (Bll),
(DS), and (Dl2a), the value of A is

" 3"--1 (a+l)(l+_) Fo(r/b,o) ng.o (D13)

for the present case.

CASE$=I

For this case, w.,)=O and (for 0o_0)

0o (3"-- 1) "_

_0o 3"0"+ 1

(0;)__-0.+ 1)

2",/+o"--1 ('r-- 1) (a--l) 2-,¢+ o--- 1

'ql-"0o _ go'q Y-I _ Ko v (,,+u 0o _' (*+_)

"v 1

(D14)

The momentum equation ean then be x_xitten

d [_,2/(r_--_o)]±r, (l(F,ffFo)
--\3` / 0°n'-_ d0o T'_ 0 dO0

-I-(3"--1) [23"(0.+1) #--33"--3"0.+4]n _-_ _pe

33"+')'a--2 ___{F._ ¢.,'_V i_---5-_ = 0 (D15)
23"_iaq- i) ",.l' o To/
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The resulting lhrec independent ns3maptotic solu-
tions are

(l) For ._'-----(7 7 I), p 231@o---__.7_T71 G2--E2 O,3'.,(r _ 1)

L_=--vL2,1, 3l_=--v3L:,i:

(-,, -- 1) (a-- 1)

M:2., [(7-- 1) +31u]Kr_ _(_+_) y 2

L.2,i yP[31P (31--1 ]Fo(O)

1 [(31-1) [?.v(,_+ 1_,q- 2v2(_+ 1)

_37_vo.+ 4] nt 3-y+../o-- 2 '] "_
(31-1)+31uJJ

_f

(I) 16_0

2_+,r I
(3) For ._'=_,, P .ff,7+l) ' 6'_ L_=0:

<,_ =og (o +p._ F;,,_og+.. ,)
rl _o

_o --_,, [E_+ (u+l'+ 1)M_,:_0_'-t-...1

/{_"_----0g{0 _ [31(u+P+l)--ll.lL._og+ ...}
_0

. _ (7- I)(o'-1)

311,,a (331-t-3_r-- 2)/_e- _

E_ -31-(_+l)(PTu)[31(u+P+l)--llF.(O)

=-h

(D 16c)

Rq)hwing L2,], L2._, _ll;(l E2 by .1, B, and D, respee-

lively, gives

+OO_(PhO_)+ ... (D1%0

2_'+_-1 E_ O_ 0:
(2) Fo,' ._" 0,P 31((_+_),

_2,.2 _ uL2,_+ (P--_) 3f2,..,0_+ ...
*Po

.¢o

F2,,.
& .----(-_-- 1) L_,_+ [31(P+ 1) -- 1] ._5,_0_'+...

I-2,2

(7-1) (_r- I)

231-°(_+ _) P[31(p+ _) - ]1Fo(O)

("f- I) (a-)

[(2-31) (:_+31_-2)]ho ,_,+i_
2312((r+ 1)P[31(P+ 1) - 1]Fo(o)

_g

_=A0o(_')[_" --- ] (_l'+l)f0g]+B[_+(P+l),j0g]

+OO_[l+(u+P+l)l_Og]+ . .. (D17h)

_=A0o --_,P.[Oo)+B((_--_)+b(P+])

--1]goV_ } + DO_[31(u+ l'-_ 1)--11h0_'÷ . , . (DI7,.)

The constant .t is found _ts follows. Considering

only the leading terms, equation (D 17a) can be ex-

pressed a.s

"_-- _31+yu 1 (D1S)

Noling equalion (B16), it, is seen thai

..1 - 1_'+_ Fo(O)
317 1(Dl6b) (D19)



APPENDIX E

DERIVATION OF EXPRESSIONS FOR DRAG

The drag on the l)ortim_ of tile body upsiream

of any section 7, designated D('2), can be found

either by inlegrating tilt' pressure distribution

along the body or by computing the energy of
rite transverse flow at section Y. Both methods

are used herein to obtain expressions for D(_).

INTEGRATION OF PRESSURES ALONG BOnY SITRFACE

The eases _<l and fl--1 are treated separately.

Case _<1. The h>rebody drag is given by

D(7) Sb (J')

--2_-_| cp,o (7o)_d7b (El)
q _10

assmning, for cr--0, that tile body is s3mlmelrical
about the _-axis. But, f,'om equations (13a),

(22a), and (23),

70 _Kr" (n<o+_,"')

dTo-_Lm/" _[,<o+_ ([+N) Jx] d+

c..b--2_2m_x '("-1> [F0(n<0) }-eF_(v..,,):c _3

,%d)stil uting in lo eq ua lion (E 1) gives

D(V) / _{2rr_maq6_+ a (k_%,o),,+,= 2Fo (_<o) x,_ ++a)-a

I +1 }F_ (n_.0) , _+ t +
3,m(o'4-3) 3=} A r (t./:

-+-E F0 ('Tb.o)-> '70,_ _1

Assuming

(E2)

m>2/(o-+3) (i.e., B<I) (E3a)

N> 2-- m (,r 4- 3) (Eab)

integration of equation (E2) yMds

D(_)

2r_ma@'+a(T,_<o) _+t

[m ((,+ a)- 2]

m (a-I-a)--2-kN

XkFoo(_;iO)T ,0.0 _]/":'+')-'+" 0q]4)

Case 5- 1. For 5- 1, dw zero-order flow fieht

eorrespomls to the flow over a flal t)lale (a--0) or

circular cylinder (a--l) with semithickness or

radius, respeelively, equal it) 7N. Designate the

known zero-order drag of the nose (x 0) by Dx
as in reference 1. Then

Cr_a
D(7) D,@2rr"q I c, _.Tb)qtT, (E5)

• t! {} ' "

where 7b is measured from the surface of lhe zero-

order t)ody. From equations (13b) and (22a),

7b= 5_+..-_ff' +: +_ (E6a)

1 N

(17:_= 5L_ _':Hm (I +#) x "%+_-_ dx (E6b)

cp.b=2£'m2xW'-_Fo(O)q 0(_) (EOc)

Substituting into equation (E5) and iniegraling

yMd, for N>0,

O(7) :D,v-+- 16rr'q(1 +t_)£Fo(O) lifo(L)] "+'_ax
(,r+ 3)'-'(_-_ 1)_, (E7)

wherein m 2/(o'+3).

18
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DRAG FROM CONSIDERATION OF ENERGY OF TRANSVERSE

FLOW

Tit(, forebody drag D(x--) can also be found by

computing the energy of the transverse flow field
as dis('ussed in refi, rences 1 and 2.

Let E be the energy (eompui ed as a pert u rbat ion
fronl the undisturbed frec-stream value) per unit

mass at any point. Then

/ p 1 2\

From references 1 and 2

D (Y) = 2._l v E: d7 (Eg)
_,7 0 (7)

where the integration is eondu,.te(t al station Y.
But

7= _T,,,.'%

d7:_l,.:' (l_

_,_: 1 +ea2r v

7/_= _<oJ _.yv 3<l

= (_jx)_:(_+, 3=1

(E _0)

Sul)stituting equations (12) and (El()) into equa-

tion (E9) and neglecting higher order terms yiehl

1 _ 20 ,_oq_0 v

1_ a4-1

m (o-+ 3) - 2 '_'° F. (,_,o)

=1

But., from equations (24) an(t (29) of reference 1

ft<l/3=l} (El2)

where I is tabulated as a function of 3' and _ in
reference i. From the mean value theorem aml

equations (15),

F'+'":"/ Fo __o¢_ ,, , _-/ Fo--¢',,¢o'_
\T -I _ /,1=1

4ta,.i x
C- l (El 3)

gim ilarly,

re,. ]

,o_ 7-1 _'r'V fl<l

Fo(0) (g_4)
="(a-F 1) (V-- 1) ¢'rv /5':--1

Using the as3_aptoti(, forms noted in equations

(43) of reference 1 it can be shown

1 f,_ 1 7+1
- "qt_,02,)._,0 _k°'_b_ d,=q 3"-1 "+_

2 Fo(_.,o) _,rv for/3 .0

=higher order for/3>0

(g 5)
Define

"---.f,lo.o _o j (El0)

Sul)slituling equations (El2) h) (El(;) into equa-
tion (Ell) permils lhe latter to be written for

fl=O, O<fl<l, and fl 1, respe('lively,

/9(.,'7)
4g_rqVm 2(6L )o+ _x_+ a),,,-

¢+_F, (- _ f " ",,,o o,._,o:+_ax . 4a_ _.oF.(.<o)
= 1. l"+v_-- 1a-J1 " 3'--1

13"+1 o+u [3`_ 1 ]_/" }27--1 v,.0 ---F0(w,o) for5 0

(E 17a)
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.=m_,*,,'Fu(v<o) q_e,,x I rib, F.(,,,,o)
m (a+3)--2 I 3'-- 1

fro' 0_3_1 (E17b)

E 4., Fo(0) .7=[Te.r _ /.,fiVe 1 (a_{2i)-__l)j

for/3-- 1 (E 17c)

All lhe quantities on the right side of equations

(17) are l,:nm_m f,'om the zero-order sohdion except
aa and ]'e, which att'e found from lhe perlu,'bation
soh,t ion.

From equalions (El7) it is seen that, when

m 2/(a+3) (i.e., /3= 1), the zero-order drag rises

discontinuously al a'=0 and is constant for z._-0.

This flow was referred to as a "cons{ant energy"
floss- in reference 1. Similarly, when N=2--m

(o'+3), the port.lon of the drag associated with the

pert urtmtion solution rises diseontinumMy at a'-0

and is constant for a:_--0. Equations (El7) are

more general than equalions (E4) and (E7), since

the range of N is not reslricted in the former

equations.

ill



APPENDIX F

BOUNDARY-LAYER GROWTH ON SLENDER POWER LAW BODIES AT HYPERSONIC SPEEDS

The boundary-layer displacement thickness on

slender power law bodies at hypersonic speeds

was found in reference .'2 using the lee,1 similarity

concept of reference 5. It was assumed in refer-

enee 2 that _ - 1, Prandtl nnntber : 1, the body

is insulated, _ltul viseosily is proportional to tem-

perature. A simila," derivation for displacement

thickness is presented herein exeepl that the o- = 0
case is inehtded and the nssumlHion of an insu-

lated body is replaced by the less restrictive

nssmnpti()n that the body sm'faee lem.pernhwe is
the same at all stations along the body. All

physical quantities are dimensional in the presenl,

section, and the superscript bar is omitted for
convenience. In the present section the symbol

p represents viscosity.
Following reference 5, the independent variables

s and _/ (where ,_ is distance ahmg the body and y
is distance normal to the body) are replaced by

where h,t is the local stn_mtion enthnll)5.

is further assumed that

If it

_ p,,u, F"rg,0 _ (t?I (121a)

#,_pdldb.o ds (Fib)

The subscript e represents loe.al free-stream con-
ditions just outshle the bmmdary layer. A stream
funethm exists such that

a_ssume

671b¢--PTl*'a, o t
(F2)

6"-- prH, o
.)

(2;)"y(_) (F:_,,)

so thatJ"=u/u,. Nimila,'ly, assume

h't =g(A) (FSb)

P,'= 1 (F4a)

PP-= 1 (F4b)
Pe]-*c

the boundary-layer monlentum and energy equa-

tions become, resl)ectively,

,%

Ill tl " l 2 . ].f _.ff +_[g-(]) 1-o

mul _" (F5)g"+.fg' o

with boundnr3- conditions

lnld

.f(0) ./'(0)=n,./'(,)) _1 as ,) .,co

g(0) ,0,, or 0'(0)=0; g(,_) ,I a._ ,_ -_

Here

3=2; d.1/_ (FO)
-J/, d,,:

Equations (FS) were solved mmwrieally in refer-
enees 6 and 7 for various values of g(0) and 3-

[Note: S=-g--I therein.] The(lisph.:enwnt thick-
ness for these solutions is (ref. 5)

|)lit

r_.(,p,u,_.)o LP uJ

_- ) Y-- ]P':--(I+ 3[_ g--_ M_(.f') _
p \

(FS)

F';ubstituting equation (F8) into equation (F7)

permits the l_|th, r to be written

(F9)

21
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_,vll(q'e permit equation (Flb) t,.)be inlegrated. Sub-

f:J_ (i--f')dr_ stitution inlo equqlion (FT) then yields, for(3,--1)3[==>>1 and (v--1)3/_>>l,

_0 az,Z_--- .f'(1 --.f')d_

FJa-= (g-- 1)d_

For a given 9(0) and _ the integrals ,.L, and (Jl+
da) ran be evaluated from tlm numerical results

in tables II of references 6 and 7. In parfirular,

"t

t
J' _l Ja=[II,,c] r_,. r

These results are summarized in table I of the

present report. Addilional values for the insulaled

wall ease (9(_)--1) are also included in table I,
as obtained from table I of reference 8.

The expression for a* and a can be sinlplified

for the case or hypersonic llow over slender power
law bodies. For such bodies

r<o=%,oaL ./_ (Fll)

P'= ya; f d,. ,oy
P_ nX.0 \ d.r/

Consislenl _ with equalion (F4b), a constant oa

can be defined such lhat la/T=w_/T_ or

/2 e ].,t_
--=_o (FI2)
To T_

(If ,u_ is not proporlional (o T_, a mean w_lue of

w is used.) Subsliluling equalions (Fll) and

(F12) into equation (Fib) and assuming s=x

J /1 J' +'L:_'\ a

T,= ,,_ -_e 7g.L a-_F00/_,o) _-_(o-g 1) Z 1 _..k.]

(Vi3)

where II,,L-=-O_,u_L,/u_. Sinfilarly, since

II e 11_ 1
3L=---= ,-_

tT_ (I e (l, e

_., ,F2m (z-t- 1 J - 1

da__T-- 1 (l(p_/p_) (isentropic flow external

a_ 2-,/ (p,/p_) to boundary layer)

equation (F6) becomes

¢}=7 l 2(t--m) (F14)
7 2m (0-1--1) -- 1

Equations (F13) and (FI4), together with table

I, define the boundary-layer devclol)menl on

sh,nder power law body at hypersonic speeds.
There appear to be several misprinls in 0m final

expression for _*,/L in reference 2. (The inlegrals
Jl and ..Z2are missing and m is in the numerator

instead of the (lenominalor Iherein.)

The validily of equaiions (F13) may be ques-

lioned for 3=1, o--- 1, since r_,u--0 for this ease

and the right sides of equations (F1) and (F2)
arc identically zero. If r<0 in replaced by rx in

equations (FI) and (F2) and if the assuml)tions

incorporated in equations (FI1) and (F12) are

again applied to permit integration of equation

(F16), it is found that ._'has a logariflmaic singu-

larity at x=0. It thus appears that the hyper-
sonic slender body approximations mus! be aban-

(|()ned in order to obtain a boundary-layer
sohltion fi)r the _=l,a--I ease. Such a develop-

meat is beyond the scope of the presenl report.



APPENDIX G

AXIALLY SYMMETRIC BODIES AT VERY SMALL ANGLES OF ATTACK

In the present section equations are developed

which permit finding the effect of a power law

lateral perturbation of tile eenterline of a slemler

power law body in a hypersonic stream. The

flow about axially symmetric power law bodies

at very small angles of attack is probat)ly the

most importan! application of these equations.
The ease 8=or--1 is excluded from consideration.

First, the equations of motion will be put fll

cylindrical coordinate form. Let (x,r,0) be a

E nerg'y:

&,. ar rb0/_,p_/ 0 (G1d)

Equations (G1) reduce to equations (3) for the,
ease of two-dimensional or axis3mmletrie flow.

Assume a zero-order body and shock of the

form rb.o-----_b,0X'_ and Ro=x '_, respeetivdy. If the

eenterline of the body is disphwed locally by
small amount

z= _,rv+'' (G2)

V

(e)

_--X

cylindrical coordinate system such that x is in
the free-stream direction (see sketch (e)). Let

r,w be the ]ocaI velocities in the r,0 directions,
respectively. Dependent and independent vari-

abh's are assumed to be nondimensional (e.g., eqs.

(1) aml (7) of tile present report and eqs. (Sa)

(Sb) of ref. 4). The hypersonic slender body

equations of motion (e.g., eqs. (9) and (10) of

ref. 4) become, in cylindrical coordinates,

Continuity:

_4__p,,+_p,, 1 aow=o (Cla)
o.r-- Or _-4 r bO -

r-Moment um:

_;'' _;'4 w b;, w_-I-t _P 0
5;r iSr r /30 r

(G Ib)

0-Moment urn"

_w . 5w . w _)w . cw . 1 _p
57.,..,.+_' _7+_ _+r -t-7_ N -=u (G ] e)

in the x,z phme, the new body and shock locations

are given by
r__.. x"(n_._+_x 'v sin 0) (O3a)

R--x"(1 + _j" sin 0) (G;_b)

where a2 is a constant. For the ease of a body al;

positive angles of athwk a,

e=--a/_ (G4a)

N= 1 -- m "_ (G4b)
= fl/2 J

From equation (O4a) it. is seen that c_ must be

small compared with 6.
Equations (G1) can 1)e reduced to ordinary

differential equations as follows. Introduce new

indel)endent variat)h's (,V as defined by equations

(10). The dependent variabh's may t)e expressed

as

v=m_" _(_0+_ 'v sin 0 ¢2) 1

w= m _,v+,, : cos 0 _2 t (G5)

p=¢0+e_:"sin 0 ¢2

where 9, /", $, and .q are functions of 71. Lqualmns

(O5) are consistent with the boundary conditions
al the shock and at the body surface. Suhstitution

of equations (0,5) into equations (G1) gives zero-

order equations identical with equalions (14) and

perturlmtion equations of the form
23
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Continuity:

¢2 ¢2 ¢_o a ,p.

' q_7-y 1)

+L n-_o 3
¢, a, --0 (G6a)
¢o n (n-_o)

r-3 Io ill(' :lturn:

!

1 G G
(n-co): _0 t"o

-t- _-- ¢0 -_1n -- ¢o

+- _ _=0
(n-¢o)'¢o ¢,,

0 *[onwn turn:

(GOb)

Asymptotic expressions for the depemtent var-
iables, valid near ,Tb.u,arc required if equation_
(G6) are to be mmwrieally integrated. The der-
ivation of these as)m_ptotic expressions is now
outlined. The cases 0_fl<l and f_--0 are con-
sidered. (The case ¢=0, _--1 can be found from
the equations in the body of the report, and tho
case a--l, fl--1 is not being considered.) First:
tit(, equations of motion are written in the form
(treating ¢,/(_--_o), F_,/F., ¢2/60, m,| -q2,'T/as the
&,pendent variabh,s and 0o as the indepemh, nt
variable) :

Continuity:

,1[¢:,_(,7- ¢0) ] (l I¢:,,'¢,,)
d0o d0o

+l F ¢2 + ¢2 Q.2 ]---0 (G9a)0,,L,7--¢o ¢,, (_ 1),

r  ,o-I
' ro

_:2+k ::2

(GOc)
Energy:

Foo-_,_\'_ 'o ,-¢_ t__., , ¢o j¢o

_0+ ,-¢o ]F=o (c._d)

The boundary eondilions at the sho(']_ can be
shown to be satisfied if

r-_lolnentunt :

d [¢:/q'_ _o)] q._k_ _2 k2 d (F_,.."Fo)
doooo _--¢o Oo- _,_'r) dOo

(]0u --0o _7--¢o

.¢,, G/

0-_ [oIltelltum :

(G9b)

¢2(1) 2

a2 3,+1 [li (_+_)_'1--_o0) (G7a)

F2(I___)=4 [I+(¢+I)u]--F_(1) (G7b)
02 31+ 1

¢2(1) ¢4(1) (G7c)

a.,(])_ -2
a2 7+ 1

(G7,1)

The tangent flow boundary eomlition at the 1)ndy
surface is satisfied if

¢2(no.o)= (¢+ l) (v+vu--/_)/_, fl<l (GSa)

_z(0) = (v+vu 1)h, ¢=o fl=_ (Gsb)

It can also be shown tha! F,2(_)--F_(n_.n ).

(l(-qdn)__ ks t]2 G E_=O (G9e)
dOo " Oo _ 0o_+_/_) Fo

]_nergy:

do° _ dOo _-_o ;_ _tru(,o-u =o

(G9d)

where, for 0o=0 and 0_<fl< 1, the quanlities lq, k2,
• .,/cs are COllSll/lllS given by

k,=--gq 1---,po /3 g+2 3' ] (filOa)
a41 2 a-f 1

_+1

"2=( 1-¢_-10o'0:'_2]';'°_o0°- (¢'v, ----3'--2rt_°'gl E3'_ 1 ]"o(%,o) ] --4-

(Gl0b)
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k_ dFo 3/c_,g.%_ 1
ka=Fo _--_.(no.,,) for 0<_3_1

(GI0c)

0o/ 6o d0o--o-+l for 3=0

• o_,, )/'o(%_ F .... z -/
k*--c_+l ,7_ ¢o (_+1)(7+l),7_.,,L(7+l)bo(,7_.,)A

(GlOd)

1- 2(_,I,7) _ 11%=--mJc _r+ l '2 _--_ (GI00)

CASE O<_B_[

/kssunle the dependent variabh's to be <iffile form

]_2 /_N+I[_U' i tql - (JtT)]_Zl _1_

--=% L_-',l_vo -..]

_"=o_" [_t_,,+o'o-'a/'>_..,,+... ]

(Gll)

where I_, F2t, _'2o,_.2_,and so forth, are constants.
Substituting equations (Gll) into equatiol_s (G9)
and collecting the coefficients of the lowest order
temls, and the second lowest order terms, yiehl,
respect ively,

7"-_
(.\ _ 1),p2o-- (]_r--#)620 $22o

o%]

-- k2 (,_'@ 1) F2o@_::_6:o= 0

(_"+ kD .%°-o

0 _

(G12a)

"_(u--g')_.,o + 3_o= o

( +2- j') (2 +, ,,,- =o\" 7, - \ "_ / " <_+i

(._'+k,)+.,o--k2 (._-+2--_) F_t+k:,+.,, 0

(._'+,--_,+k,_) ,._,--k,F2o=0

(G l _<2b)

From equalions (G12a), a nolltrivilil sohition
results if

(G13)

These define four indeperident asymptotic solu-
lions. The eoP.slilll| coefficients in equations

(G1 l) ref(,renced to I;2o may be expressed as

¢,_o_k2(.q+ 1)
172o ){'a

F_o-- 3 I5o

.%° [ _,,.o (:_'-_,)-_'-°-IF--_=(,_+i) (?7"+U/<--_-- F..,oJ

f12,__ k4

"g

<_21 1 _<,.1

&o (~ o" F2o

¢2i 3 _2,

,:.

(GI4)

CASE _0=0

Assume the dependent variables to be of the form

_2 __0._0_(_201102_21--t- . • • )

rl-- _o

a:=o-_(a_o+ oga._,,+... )

-,=Oo (¢_o+Oo¢,_,+...)

(GlS)

Substitutillg into equations (G9) and eolhwting
the coefficients of the Iowesl_ order terms, and the
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second lowest order terms, yMd, respectively, (raced h} ?_2o,are

0_" _-1)__>0-(.'T'-u)¢,_,- U_o =0
¢-l-1

(-_'i _,,)_=+- G(,_" +'2) Go+ _.:_=>o=O

(,_-+ G) .%-o

(u -_:)_=,o=0

(X" ÷a)_._, (-?+2-u)_,:, -9':' =o

(._'+ 2+ 7%)_,-GGo= o

(,9+'2- u) (Go- v¢,_,)=o

From e(lUalion._ (G16a), n nonlrivial
exists if

_: --ks, u, 1, --2

(G lOa)

(G 61})

solution

(GI7)

These define four indel)endelit iis3qut)iot.ic sohi-

tions. The coefficients in oqualions (GIS), refer-

for ._'=--],% -- 1
G<,-- ._-+ k,

--0 for-_,'=U, --2

,/,_,, /,'_(X"+ 2)
for X'-u

F,,0-- G

--0 for ."_'---- k,:,, 1, --2

P.2o (a-} 1)(.'_i l)(._(-V2)],._
for ._'= -- k5

:0 for._r =U, -- l, --2

-q'.,i k4

Go X'+ 2+k_

_2__2= 1

Go v

F 1 %7_'_i_,= ] (,_".-t 2--u)
Go fc + 3 L I% " ¢-p 1 ["=,o_J

F2o--],.2 (._'@ 4) ]q:,,--

(G 18)



APPENDIX H

APPROXIMATE SOLUTION FOR HYPERSONIC FLOW OVER SLENDER BLUNTED WEDGES AND ('ONES

Chernyi, in references 12 and t3, has developed

an approximat(' so]ulion for hypersonic flow over
slender blunted wedges and cones. For the case

of reD slender wedges and cones, his approximale

equations can be integrated in closed form ,'rod

the resulls can be compared with those from the

zero-ord(,r and perturbation equations of the

present report. This is done herein.

Fizs[, the derivation of Chernyi's equations will

be oullim, d. The forebody drag up to station 7

is equal lo the energy of the transverse flow at t.|tat
slnlion. Thus

Dv+2_r _ "== dY==2r" [_ _ i + 7_d7- P:_ d7 ,, _ _)

where Dx is the impulsive drag at 7=0. For the

present l)roblem
7b = a_Y (lie)

.Introduce the followingnondimensional quantilics:

1 I

/ 9a_ \o,-_ _: = / 2a_ \Tw 7 "1

-- r= i ----/7= - ] •

_= E = _ = -_

(IT3)

x,Vl I eFO

Sui)stitulillg equations (112) and (H3) into equa-

tions (Ill) yMds

+ [" F_7o,ty = I )_rqlT+

(H4)
-- -- °

Assuming p and 7 are constant in the integrals on

the right side of equation (H4) and taking _=_

Vnoling m,=:z, and, from continuity, or=="yiehl

d?=/?-,"+'t(_-_ 1)]

l , F==_,,= P_
--" ",:"*=--\ 7_.-_ /+_;+(/(tis)_--)2_ O,) 7- I

Chernyi furthtw assmnes that the enlire mass of

llw disturbed flow is concentrated in the shock

wave and moves with it. This assumption is

nearly valid for strong shocks provided "/is near I.

Thus, Chernyi takes

7=d_,/d7

= I: (l16a)

and (from conservation of nmmentum of the mass
concentrated in the shock wave)

1'_--(2 R)" d_

Substituting equations (II6) into equations (I15)

yiehts

T,'_+,-7.+,d (/:o+,A),/7_+'C-:)',, 0t7)
= (-r- _) ('2_), dY - 2 "

Chernyi numeri('ally integrated equation 0t7) for

•'/= 1.4, a-- O, I ; lhe results are 1)1o!ted in references
12 and 13.

Equation (117) can l>e solved by series expansion,

for small x, and lhe resulls compared with those
from the more exact zero-ordm" aml l)erlurl):_lion

solutions of the present reporl. Thus assume lg

of the form (for small x)

-- _ E /1=_-+_\_+' -1??:z<>+:--'_-_<,_K:+_) +... (Hs)

where Ix" and ¢ta are unknown constants. Sub-

stituting equal|on (AS) into equation (H7) and
collecting terms of order : and _(_+t:/(,+s) give

0-=0 (ll9a)
33'-- 2

ae=:) (27+ 1)

("'7''}, _= 1 (1191))
2-/-- 1

a"=8 (v+ _)

27
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The pressure coelV,'eient oil tlle body is given by

Substituling equations 0]8) into equation (H10)
and comparing with equation (51b) show

G(o) = i/2 ,_=0,1 "]

&(o)=4 av-2 _ 02v+ l

72y--18_+1 o-=l J

(IIl l)

These expressions fi)r K, a2, Fo(O), and Fd0 ) tony
be compared with equation (50e) and the numeri-
cal results of table II. Such a comparison is
given in table III. Chernyi's approximate sohJtion
becomes less accurate as "y departs fronl 1.

Although tlw m etho(l of references 12 aml 13
is inexact, particularly for 7 not near 1, it has the
advantage of not being restricted to sm.ll va|ues

i

of 7 (as is the perturtmtion solution of the present
report).
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TABLE I. BOUNDARY-LAYER PARAMETERS

g u,

0.2

0.6

1

0.14
0

. 50
2. 00

--0. 14
0

• 50
1. 50

J2

O. 495
. 468
• 4235
• 383

0. 504
• 468
.409
• 366

0. 20 0. 554
0 .468

• 50 . 380
2. 00 .294

.I1 + Ja

.12

0. 134
0

• 257
--. 538

0. 692
• 518
• 199
. 083

2.034
1. 555
1.185
• 759

0 0. 470
05 .452
10 .435
20 .408
40 .370
60 .336
80 .312

--0.10 O. 543
0 .468

• 30 . 333
• 50 • 274

1.00 .1765

2. 59
2. 53
2. 48
2.41
2. 33
2. 27
2. 24

5. 67

5•18
5. 49
6.01
7. 85

Results fox" g_ _1 are from refs. 6 and 7 wherein gw--- N=,+ 1,

fi_fl, "]a=--l/f'.{, (Jt+.la)/Ja=- I1 .... Results for g_ 1 arc

from ref. 8 wherein _ a d.,_O, (.I,+Ja)/J2=-m.

[
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TABLE II.--RESULTS OF NUMERICAL INTEGRATION OF PERTURBATION EQUATIONS

,y

1.15

1.4

Case

(9
(h)

(.)

(19

(")

(,,)

(,,)
('9

(.)
0' °)

(°)
09

(.)

(b)

0

- !_
0

- 3i
0

0

0

0
34

-?i
0

!4

_=0

a2

1.16
1.07

I. 29
1.12
1.04

1. 34
1.17

• 974

1. 40
1.15

• 693

0. 325
.188

1. -1-1
1. 20

1. 77
1.32
1.14

1. 86
1. :t4
I. 02

F2(_b,o

O. 798

2. O0

t. 18
1.71
2. 09

1.39
1. 58
2. 03

l. 53
I..15
1.56

O. 506
• 483

O. 869
2. O0

1. 39
1. 76
2. 03

1.6t
1. 67
1. 90

Ca_o

(9

(.)

(-)

(,)

(r)

(.)

(.)

(.)

_.4 ...... 0 1.05 1.77 ......
(.) }it, 1. 44 1. 53 (,)
(b) 3,] .660 1. 36

l (,) !4 O. 442 0. 611 (0
0' ") _ .2 t 7 .555

0

_r=l

0

o j

0

0

02

1.05
1.04

1. O0

1.08
1. 02

1.18
. 73-I

0. 0518

1.13
1.09

1. 1-I

1. 19
1. 06

O. 863
1.96

I. 64

1. 49

1. 99

1.31
I. 96

O. 503

O. 843
1.91

I. 59

1. 45
1.87

0 I.38 I. 29

_i, .655 1.65

1 0. 0389 O. 643

I. a7 0 (.) -_ 1.74 o. 934 (.) --34 I.20 0. 823
(b) 0 1. 33 2. O0 ....... 0 I. 15 1. 86

}_ (,,) --1_ 2. 28 1.55 (.) 0 I.22 1. 5.5
0 1. 52 1.78

(h) ,_.... I. 25 1. 99

_ --_,_ 2. 40 1. 82 ..... 0 1. 29 1. 40
'_ ......(q 0 I. 71 1. 73 (,) _ 1. 1I 1. 80

(") _ i L 111 I. 8.t

_4 ..... 0 2. 48 1.91 ...... 0 1.53 i. 24
(.) !,i,; 1.74 1.59 (,) _i,; .645 1.53
(b) _ .701 1.3 ]

1 (.) !_ 0. 546 0. 67(t (0 1 0. 0294 0. 828
(h _) _ .244 .605

• Effect of 1)oundary-layer development.
b Effect of small angles of atlack.

Effect of wedge and cone nose blunting
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]
t
i___

TABLE III.--ItYPERSOXIC FLOW OVER VERV SLENDER BLUNT-NOSED WEDGES AND CONES
(t_ 1, _-- (¢+1)/2)

1.15
I. 40
1.67

1.15
1. 40
1. 67

K

0.938
1.23
1.49

1.04
I. 34

1. 54

]?resent numerical solution

(/2

0.188
.217
• 244

0.0518
.0389
• 0294

Fo(o)

0. 415
• 325
. 264

0.411
• 311
.24l

F_ (0)

0.483
• 555
• 605

0. 503
• 643
• 828

Chernyi "lpproximation (eqs. (it9) and (lll 1))

K a2

0.837 0. 220
1.09 . 289
1. 22 .347

1.01 0.0756
1. 23 .0938
1.34 .ll0

Fo(o)

0• 500
• 500
• 500

0. 500
• 500
• 500

F_(0)

0. 549
• 724
.866

0. 529
• 656
• 764


